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Abstract

Cascade irradiation produces a significant fraction of the damage in the form of small mobile and immobile vacancy

and interstitial clusters. This has led to the introduction of the Woo–Singh production bias theory. In the pursuant

studies, the predominant effort that has been spent is in investigating the validity of the concept, and in its usefulness in

complementing the traditional theory based on the concept of sink bias. Although plenty of theoretical and experi-

mental results supports the concept, relatively little attention has been paid to the important area of microstructure

nucleation. Within the framework of the classical theory of nucleation of overcritical precipitates from small subcritical

nuclei, the nucleation processes at elevated temperatures of both voids and interstitial loops from the primary clusters

are similar, and can be similarly treated. Recognizing the importance of stochastic fluctuations in the evolution of small

embryos, a single-component nucleation theory is formulated using the Fokker–Planck equation, to take into account

the stochastic effects of the fluxes of mobile defects, arising from the random nature of diffusion jumps and cascade

initiation. Analytic solutions for the separate cases of voids and Frank loops are obtained, and the corresponding effects

on the evolution of the microstructure are discussed.

� 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Under cascade-damage irradiation, point defects are

produced in the form of small mobile or immobile va-

cancy and interstitial clusters [1–5]. Recognition of this

fact has led to the introduction of the Woo–Singh pro-

duction bias [6,7] theory. Under such conditions, point

defects are produced in discrete packages randomly in

time and space, and both the randomness of diffusion

jumps and the random initiation of cascades introduce

stochastic fluctuations in the point-defect flux that ar-

rives at any sink [8,9]. It is intuitively clear that such

fluctuations are particularly important to processes in-

volving only relatively small numbers of point defects,

such as the evolution of small point-defect clusters

during the nucleation of microstructure components.
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Indeed, to consider the growth or shrinkage of small

interstitial clusters with sizes of about 5–10 atoms, the

effect of fluctuations in point-defect fluxes is very im-

portant, because a cluster that has been annihilated

cannot be revived, even when the time-averaged point-

defect flux dictates that it must always grow. Similarly, a

small void embryo, after having been annihilated by

a wave of interstitials, cannot be regenerated even if a

larger wave of vacancies subsequently arrives. Consid-

eration of kinetics beyond the mean-field approximation

is clearly necessary to allow an accurate physical un-

derstanding of the evolution of damage microstructure

under cascade irradiation, particularly the nucleation of

microstructure components, such as voids and disloca-

tions.

The conventional approach to modeling void nucle-

ation under irradiation is based on the classical de-

scription of the formation of small precipitates in a

supersaturated solution. In this approach, small ther-

mally unstable new-phase embryos continuously form
ed.
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and re-dissolve in the supersaturated solution, and can

grow beyond the critical size via stochastic fluctuations

[10–16]. Beyond the critical size, nuclei of the new phase

become thermally stable, and on the average can grow

directly from the supersaturated solution, without the

help of the stochastic fluctuations. In most studies of

void nucleation only statistical fluctuations produced by

random point-defect jumps are taken into account, and

the dislocation bias is the only driving force for the

evolution of the damage microstructure [13,14]. In the

present paper the additional effects of the cascade-in-

duced fluctuations, and the fluctuations in the rate of

vacancy emission from the void, are also taken into

account.

Another important component in the microstructure

development during irradiation is the generation of

dislocations from loops. In the temperature range just

above the annealing stage V (i.e. the peak swelling re-

gime) the dissociation of primary vacancy clusters that

are thermally less stable than primary interstitial clusters

(PICs) produces a much higher flux of freely migrating

vacancies to all sinks, than that of the mobile intersti-

tials. At the same time, from the continuous generation

of small clusters in cascades (particularly thermally

stable and immobile PICs), it is clear that, if they are

only produced and not removed/annihilated, they will

become the dominant sinks at a even very low dose.

Acting as recombination centres, they will suppress

further development of the microstructure. Within the

mean-field theory, it is difficult to rationalize the con-

currence of the annihilation/removal of PICs on the one

hand, and the nucleation and growth of interstitial dis-

locations loops, on the other, under the continuous as-

sault of a net vacancy flux that drives the growth of

voids.

One of the possible ways faulted loops may grow,

despite the net vacancy flux they receive, is through the

absorption of smaller interstitial clusters and loops by

coalescence during climb. Numerical calculations [17]

shows that the absorption of small interstitial clusters

and loops, by climbing dislocations in their vicinity, can

provide both the positive growth rate of larger loops,

and the sufficiently high climb rate of network disloca-

tions, to produce a swelling rate in agreement with ex-

perimentally observed values. However, the probability

of finding another cluster in the immediate neighbour-

hood, and subsequently combining with it, decreases as

the loop size decreases, and vanishes for the smallest

immobile interstitial clusters. Thus, this mechanism can

only account for the growth of sufficiently large inter-

stitial loops.

From the foregoing, the resemblance between the

nucleation of growing voids and Frank loops at elevated

temperatures is clear. Thus, both vacancy and interstitial

clusters are directly produced in collision cascades, and

there are also corresponding critical sizes in both cases.
Subcritical void and loop embryos are shrinking on the

average during the nucleation process, and nucleation,

i.e. the successful growth of a very small fraction of the

embryos to supercritical size, can only be accomplished

via stochastic fluctuations.

Thus, within the framework of the classical theory of

nucleation of overcritical precipitates from small sub-

critical nuclei, the nucleation processes of both voids

and interstitial loops from the primary clusters are

similar, and can be similarly treated using a unified

kinetic model. As we will show in this paper, an ex-

pression of general applicability can be derived to cal-

culate the nucleation probability in both cases. Through

the formulation of such a model, the present paper

aims at understanding the details of the physics involved

in the nucleation of voids and Frank loops at ele-

vated temperatures when the production bias is opera-

tional.

We note that the present model only considers the

nucleation of a single microstructure component, in-

stead of the more general case of simultaneous nucle-

ation of an interactive multi-component system, which is

far more complicated, and is beyond the scope of the

present work. Thus, here we only deal with the case in

which the nucleation of voids and dislocation loops

occurs separately in time. The simplification allows the

physics of nucleation of voids and Frank loops to be

followed through an analytic approach. Thus, an ex-

pression of general applicability can be derived for the

nucleation probability of microstructure components

growing due to stochastic fluctuations in point-defect

fluxes. Cu and Mo, representing two opposite extremes

with regard to the effect of surface tension on vacancy

emission from voids, are chosen for investigation.

Stainless steel, a concentrated alloy in which the inter-

stitial cluster mobility is expected to be very much re-

stricted, is a good material to consider with regard to the

Frank loop nucleation. It will be shown that cascade-

induced fluctuations indeed produce sufficiently high

nucleation rate of growing loops to explain the experi-

mentally observable concentrations of interstitial loops

and the continuous regeneration of network disloca-

tions.
2. Nucleation probability

The general kinetic equation for the microstructure

evolution under cascade-damage irradiation, including

the full statistical effects, has been derived in [9]. It is

applicable to both voids and interstitial loops, by con-

sidering them as precipitates of vacancies and intersti-

tials, respectively. Adopting the simplest approximation

that takes into account the effect of fluctuations, the

kinetic equation takes the form of the Fokker–Planck

equation [9]
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where Pðn; tjn0; t0Þ is the probability density that a pre-

cipitate with an initial size of n0 point defects (embryo)

at time t0 will have a size of n point defects at a later time

t, V ðnÞ is the drift velocity determined by the average

rates of absorption of vacancies and interstitials by the

precipitate. By definition of P , the initial condition of (1)

may be written as

Pðn; 0jn0; t0Þ ¼ dðn� n0Þ: ð2Þ

The diffusivity DðnÞ in (1) governs the �diffusive spread’

of the probability P due to stochastic fluctuations in the

point-defect fluxes received by the precipitate. Physi-

cally, the stochastic growth of the microstructure com-

ponents is the manifestation of the �diffusive spread’.

DðnÞ depends on the average point-defect fluxes, the

cascade properties, and can be expressed in the following

form [8,9,18]:

DðnÞ ¼ DsðnÞ þ DcðnÞ þ DeðnÞ; ð3Þ

where the superscripts s, c and e refer to contributions

due to the random migratory jumps, random cascade

initiation and random emission of point defects, respec-

tively.

Since small clusters consisting of two or three point

defects are mobile [19,20], there is a minimum size nmin

below which the cluster cannot be considered a precip-

itate anymore. This allows us to write down the left

boundary condition for the kinetic equation (1) in the

form

Pðn ¼ nmin; tjn0; t0Þ ¼ 0: ð4Þ

Neglecting the probability for a sufficiently large su-

percritical precipitate of the size nm to shrink to a sub-

critical size, the right boundary condition can be written

as [10,12,15]

Pðn ¼ nm � ncr; tjn0; t0Þ ¼ 0: ð5Þ

The existence of a critical size ncr in this sense, in the case

of interstitial loops, is not as obvious as in the case of

voids. This issue will be addressed in the following sec-

tion. At this juncture, it is sufficient to note that, even in

cases where the average loop growth rate is negative for

all loop sizes, this boundary condition is still valid, be-

cause sufficiently large loops will unfault, join the net-

work, and, consequently, disappear.

With this boundary condition, the probability PmðtÞ
for a subcritical precipitate to become supercritical

during the time period ðt0; tÞ is given by

PmðtÞ ¼ � o

on

Z t

t0

DðnÞP ðn; tjn0; t0Þdt
� �

n¼nm

: ð6Þ
From the Fokker–Planck equation (1), the initial con-

dition (2) and the boundary conditions (4) and (5), the

following conservation law can be derived:

P0ðt ! 1Þ þ Pmðt ! 1Þ ¼ 1; ð7Þ

where P0ðtÞ is the probability for an embryo to shrink

below the minimum size nmin and disappear, i.e.

P0ðtÞ ¼
o

on

Z t

t0

DðnÞPðn; tjn0; t0Þdt
� �

n¼nmin

: ð8Þ

Eq. (7) has the obvious physical meaning that an em-

bryo, once generated, may either shrink away or grow to

become supercritical.

Finally, the probability Pm � Pmðt ! 1Þ for a small

embryo to attain supercriticality is given by [21]

Pm ¼
Z n0

nmin

exp

�
�
Z n

nmin

V ðn0Þ
Dðn0Þ dn

0
�
dn

.Z nm

nmin

exp

�
�
Z n

nmin

V ðn0Þ
Dðn0Þ dn

0
�
dn: ð9Þ

Expression (9) will be used in the following for the

consideration of nucleation of both voids and growing

interstitial loops.
3. Void nucleation

Within the mean-field theory and a spherical ap-

proximation for the voids, the drift term in Eq. (1),

which governs the average number of vacancies in the

void, has the following conventional form:

V ðnÞ ¼ 3n1=3

a2
ðDvCv � DiCi � DvCe

s ðnÞÞ; ð10Þ

where Dj and Cj (j ¼ i; v) are the diffusion coefficient

and the concentration of point defects, respectively, a ¼
ð3X=4pÞ1=3, and X is the atomic volume. The mean

equilibrium concentration Ce
s ðnÞ of vacancies in the

neighbourhood of a void of radius RcðnÞ ¼ an1=3 can be

written as

Ce
s ðnÞ ¼ C1 exp

2csX
kTRc

� �
� C1 1

�
þ 2csX

kTRc

�
: ð11Þ

Here C1 is the equilibrium vacancy concentration, cs is
the surface tension coefficient, k is the Boltzmann con-

stant, and T is the absolute temperature. We note that

the approximation in (11) is only valid for sufficiently

large void sizes.

In the case of voids the corresponding expressions for

the diffusivities are given by [8,9,18]

DsðnÞ ¼ 3n1=3

2a2
ðDvðCv � Ce

s ðnÞÞ þ DiCiÞ; ð12Þ
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DcðnÞ ¼ 3n2=3

4a
GvhN 2

dvi
kvNdv

�
þ GihN 2

dii
kiNdi

�
; ð13Þ
DeðnÞ ¼ 9DvCe
s ðnÞn2=3
2a2

: ð14Þ

Here Gj is the effective generation rate of free point

defects, Ndj and hN 2
dji are the average number and the

average square number of free point defects generated in

a single cascade, respectively, and k2j is the total sink

strength for point defects of the type j.
For temperatures at which the vacancy emission

from voids is not negligible, the critical void size ncr, at
which the drift velocity V ðncrÞ vanishes, is much larger

than nmin According to [21], expression (9) for the

probability of void nucleation can be approximated by

Pm ffi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b

2pa3ncr

ðDvCv � DiCiÞ
DðncrÞ

s

� exp

Z ncr

nmin

V ðnÞ=DðnÞdn
� �

ðn0 � nminÞ; ð15Þ

where b ¼ 2csX=kT . It is important to note that De in

(14) is proportional to the surface area of the void

[18,22], as it is natural to expect in the case of emission.

In contrast, the contribution of the vacancy emission to

the diffusion term in the kinetic equation (1) DðnÞ is

treated conventionally like the emission contribution to

the average void growth rate, and is assumed to be

proportional to the void radius instead [12–14]. This

issue has been discussed in detail in [22], and the cor-

responding expression for De had been derived in [18].

The difference between the present and conventional

treatments of vacancy emission from the voids is clear

when we neglect the cascade-induced fluctuations. In

this case, the corresponding total diffusion coefficient

becomes

DsðnÞ þ De
convðnÞ ¼

3n1=3

2a2
ðDvðCv þ Ce

s ðnÞÞ þ DiCiÞ ð16Þ

and the term proportional to n2=3 is absent. Referring to

(15) and recalling that V ðnÞ is negative for n < ncr, it is
clear that the fluctuations in the vacancy emission rate

would produce a void nucleation probability higher than

conventionally, as long as

DeðncrÞ
ð3n1=3cr =2a2ÞðDvðCv þ Ce

s ðncrÞÞ þ DiCiÞ
P 1: ð17Þ

By definition of the critical size, from Eqs. (10) and (14),

the left-hand side of inequality (17) is equal to 3ðncrÞ1=3
ðDvCv � DiCiÞ=2DvCv. The ratio ðDvCv � DiCiÞ=DvCv is

related to the mean net vacancy flux to the void em-

bryos. The operation of production bias at elevated

temperatures predicts that this ratio is, to a good ap-
proximation, given by the fraction of interstitials pro-

duced in cascades in the form of immobile clusters, ei [6].
The last inequality is then satisfied when n1=3cr P 2=ð3eiÞ.
Thus, for a critical void size larger than �20 (i.e. with

ei ffi 0:25–0.4), the conventional vacancy emission

treatment under-predicts the survival probability of the

void nucleus. We note that this range of values of ei is
consistent with MD results (see e.g. [5]).

A clear illustration of the foregoing conclusion is of-

fered in the case of large critical void size. Using ap-

proximation (11) for Ce
s ðnÞ, the diffusion coefficient in the

void size space are described by the probability Pm [21]:

Pm ffi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b
6pRcrncr

ðDvCv � DiCiÞ
DiCið1þ dn1=3cr Þ

s
ðn0 � nminÞ

� exp

(
� 3

m
d

ðn2=3cr þ n2=30 Þ
2

"
� n1=3cr n1=30 þ n1=3cr � n1=30

d

� 1þ dn1=3cr

d2
ln

1þ dn1=3cr

1þ dn1=30

 !#)
;

ð18Þ

where

m ¼ ðDvCv � DiCiÞð1� expð�b=RcrÞÞ
DiCi

ð19Þ

and

d ¼ dc þ de ð20Þ

with

dc ¼ aGi

4DiCi

GvhN 2
dvi

GiNdvkv

�
þ hN 2

dii
Ndiki

�
; ð21Þ
de ¼ 3ðDvCv � DiCiÞ
2DiCi

: ð22Þ

In the conventional treatment, the corresponding Pm is

also given by (18), but taking the limit d ! 0, and

m ¼ ðDvCv � DiCiÞð1� expð�b=RcrÞÞ
DvCv

: ð23Þ

Comparing the curves for d ¼ 0 with those for d 6¼ 0 in

Fig. 1, it can be seen that the conventional treatment of

vacancy emission results in a contribution to the diffu-

sion coefficient DðnÞ that underestimates the survival

probability of the void embryo by several orders of

magnitude. We note that the value of ei ¼ 0:4 or

DiCi=DvCv ffi ð1� eiÞ ffi 0:6 is used in Fig. 1, to unam-

biguously demonstrate the difference between the two

approaches, recognizing that the results depend expo-

nentially on the parameters. Note also that for a rela-

tively low total sink strength (k2j < 1015 m�2), dc can be

neglected (dc < 1:5� 10�1, Ndj ffi 50), and in this case
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Fig. 2. Rates of void nucleation in annealed copper at different

values of void surface energies. Corresponding nucleation

probability Pm is calculated using expression (15). The param-

eter de is equal to 1.0 (––) and 0.5 (- - -). Experimental points are

obtained from Refs. [23–25] by dividing the experimental values

of void concentration by the corresponding irradiation doses.
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Fig. 1. Probability for a small void nucleus to become super-

critical, plotted as a function of critical void size at different

values of the parameters m and d, calculated using Eq. (18).

Dashed lines correspond to the probability in the limit d ! 0.

196 A.A. Semenov, C.H. Woo / Journal of Nuclear Materials 323 (2003) 192–204
the value of d is dominated by the vacancy emission

term de.

We can also compare the present results calculated

with Eq. (15), without assuming a large critical void

radius [21], with experimental void nucleation rate for

annealed pure copper with low dislocation density

(�1011 m�2), and neutron-irradiated up to doses of

10�4–10�2 NRT dpa [22–24].

To make this comparison we need to know the rate

of formation of small void embryos (subcritical) in the

form of vacancy clusters with n0 vacancies. A small

immobile three-dimensional vacancy cluster can be

formed directly in a collision cascade [26] or through the

agglomeration of several single vacancies present in a

solid solution. Thus, if the formation of small void nu-

clei through the consecutive agglomeration of single

vacancies can be neglected, the rate Jc of void nucleation

under cascade-damage irradiation may be estimated by

multiplying the probability Pm with the average rate of

cascade production:

Jc ffi
G
Nd

Pm; ð24Þ

where G is the effective generation rate of point defects

in cluster and free form, and Nd is the average total

number of point defects generated in a single cascade.

The void nucleation rate calculated with (24) is

shown in Fig. 2. Using a surface tension coefficient of

cs ¼ 1:7 J/m2 for pure copper, the agreement between

calculated and experimental values is good at 523 K, but

deteriorates at higher temperatures. Since the experi-
mental void size distribution is bimodal at higher tem-

peratures, with the position of the first peak weakly

dependent on irradiation dose [25], the presence of sol-

ute elements that stabilize the voids against shrinkage

and collapse into loops or stacking-fault tetrahedra is

likely. According to [25], the presence of dissolved ox-

ygen in the copper sample under investigation may re-

duce the surface tension coefficient cs to below 1.0 J/m2.

With the reduced surface energy, the void nucleation

probability is much increased, and a good agreement

between theoretical and experimental results can be re-

established (Fig. 2).

In the opposite extreme to the case of Cu considered

the foregoing, we consider void nucleation in the case

when vacancy emission is negligible. A typical case can

be found in molybdenum at temperatures below

0:35Tm ffi 1015 K [21]. If the void growth rate does not

depend on vacancy emission from voids, we have shown

that [21], (9) reduces to

Pmðn0Þ ¼
Z n0

nmin

f ðnÞdn
�Z 1

nmin

f ðnÞdn; ð25Þ

where

f ðnÞ ¼ exp

(
� 3a2s
2a3c

ac
as
n1=3

�
� 1

�2

� 3a2s
a3c

ln
ac
as
n1=3

�
þ 1

�)
; ð26Þ
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as ¼
DvCv þ DiCi

2ðDvCv � DiCiÞ
; ð27Þ
10-4
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Pm
ac ¼

a
4ðDvCv � DiCiÞ

GvhN 2
dvi

kvNdv

�
þ GihN 2

dii
kiNdi

�
: ð28Þ

Here as represents effects coming from the random point-

defect jumps, and ac from the random cascade initiation.

In the limit ac ! 0, Pmðn0Þ in (25) can be approxi-

mated by

Pmðn0Þ ¼ 1� expð�ðn0 � nminÞ=asÞ: ð29Þ

In the other limit as ! 0,

Pmðn0Þ

¼ 1� ð3=2acÞ1=2n1=30 expð�3n2=30 =2acÞ þ
ffiffiffi
p

p
Qð

ffiffiffiffiffiffiffiffiffi
3=ac

p
n1=30 Þ

ð3=2acÞ1=2n1=3min expð�3n2=3min=2acÞ þ
ffiffiffi
p

p
Qð

ffiffiffiffiffiffiffiffiffi
3=ac

p
n1=3minÞ

;

100 101 102 103
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Fig. 3. Probability Pmðnmin þ 1Þ of void nucleation in molyb-

denum as a function of parameter ac at different values of pa-
rameter as. Dashed lines correspond to the probabilities given

by Eqs. (29) (horizontal lines) and (30).
ð30Þ

where

QðxÞ ¼ 1ffiffiffiffiffiffi
2p

p
Z 1

x
expð�x2=2Þdx: ð31Þ

According to Eqs. (25), (29) and (30), even when the

void embryos are growing on the average independent of

their sizes, not all them can survive to finally become

supercritical.

Since voids are usually the dominant sink for point

defects in Mo [27–30] the parameter as can be approxi-

mately written as

as ¼
k2c ðDvCv þ DiCiÞ

2dS=dt
ffi dS

dGt

� ��1

; ð32Þ

where k2c is the void sink strength. At temperatures un-

der consideration, the void swelling rate dS=dðKtÞ varies
between 1 · 10�4 and 3· 10�4 per NRT dpa (G=K ffi 0:3)
[28], and as takes on values between 1· 103 and 3· 103.
Values of Pmðn0Þ from (25), where n0 ¼ nmin þ 1 is the

minimum number of vacancies in the void embryo, are

plotted in Fig. 3. The dashed lines in the figure are the

void nucleation probabilities in the two limiting cases,

according to (29) and (30). These equations give the

same nucleation probability when [21]

ac
as

¼ 3

ð2pasÞ1=3
: ð33Þ

When the value of as falls in the range between 1 · 103
and 3 · 103, the above ratio is about 0.1. Since

ac
as

ffi ka
4

GvhN 2
dvi

GNdv

�
þ GihN 2

dii
GNdi

�
; ð34Þ

this value of ac=as corresponds to a value of the total

sink strength k2 � 3� 1015 m�2 (Ndj ffi 50, Gj=G ffi 0:5).
When the void sink strength is much below this value,

the rate of void nucleation is independent of ac, and is

determined by the average void growth rate. With the

increase in the total sink strength, the nucleation rate

starts to drop very fast as ac=as increases, because cas-

cade-induced fluctuations significantly reduce the sur-

vival probability for the void embryos. As can be seen

from Fig. 3, for temperatures at which vacancy emission

from the voids is negligible, an irradiation dose of sev-

eral NRT dpa is required to produce a void density of

the order of 1023 m�3. This is in agreement with the

experimental observation [28].

In this connection, the shrinkage of rather large voids

with the positive average growth rate is also of particular

interest. While this kind of void shrinkage is not ex-

pected under the conventional theory of void swelling, it

follows from our consideration. The probability P0ðnÞ
for a void of the size n to completely dissolve is given by

the conservation law (7) and Eq. (25). It is plotted as a

function of void radius in Fig. 4, for different values of

parameters as and ac. It can be seen that, even in the

absence of vacancy emission, there is a chance of higher

than 50% that voids with a diameter as large as 5 nm

may shrink away. Thus, the thermal stability, or even a

positive growth rate of the ensemble average, cannot

guarantee the survival of a void in the course of its

evolution. Only those voids for which P0ðnÞ is substan-
tially less than one will grow with time.

We have shown in the foregoing that cascade-

induced fluctuations lead to a large increase (several

times) in the probability of void shrinkage. Since the
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probability of shrinkage for smaller voids is much higher

than that for the larger ones, a possible effect associated

with the shrinkage, may be identified as stochastic void

coarsening. As shown in [31] stochastic void coarsening

can also be interpreted as a non-equilibrium phase

transition in the void ensemble induced purely by the

stochastic fluctuations.

Experimental observation of the void coarsening ef-

fect has been reported in neutron-irradiated molybde-

num at 450 �C, where the overall void number density

drops from 2.8· 1023 to 1.2 · 1023 m�3 during the me-

dium-dose irradiation. This was observed to be due to a

general reduction in the number of voids, mostly with

diameters 6 3 nm (n1=30 6 11:2) [32]. At the same time,

larger voids continue to grow, so that a positive swelling

rate 6 2 · 10�2% per NRT dpa can be maintained. Va-

cancy emission from voids is not likely to play an im-

portant role in the void shrinkage at such irradiation

temperatures [21]. On the other hand, voids of these

sizes and concentration have a sink strength k2c equal to

5.3· 1015 m�2, corresponding to a ratio of ac=as ffi 0:13.
It follows from Fig. 4 that stochastic fluctuations in

point-defect fluxes can lead to a reduction in the number

of voids with diameter ffi3 nm by 4–5 times.

4. Nucleation of interstitial loops

4.1. Loop nucleation probability

Taking into account the absorption of smaller in-

terstitial clusters and loops by coalescence during the
climb, the average loop growth rate V ðnÞ can be written

as [17]

V ðnÞ ¼ V pd
i ðnÞ þ V cl

i ðnÞ; ð35Þ

where V pd
i is the drift velocity given by the conventional

expression for the growth rate of interstitial loops due to

point-defect absorption:

V pd
i ðnÞ ¼ 2priðnÞ

X
ðZiDiCi � ZvDvCvÞ: ð36Þ

Here Zj (j ¼ i; v) is the reaction constant between the

dislocation and point defects, riðnÞ ¼ ðniX=pbÞ1=2 is the

loop radius, and b is the Burgers vector.

For elevated temperatures, we may neglect the con-

tribution from the vacancy clusters, and write

V cl
i ðnÞ ¼ 2priðnÞ

X

Z n

nmin

n0filðn0; tÞW ðn0; nÞdn0 ð37Þ

to represent the rate of change of loop sizes due to the

absorption of smaller interstitial loops by coalescence

[17]. Here filðn; tÞ is the distribution function of inter-

stitial loops, which is related to the total loop number

density NilðtÞ by

NilðtÞ ¼
Z nmax

nmin

filðn; tÞdn; ð38Þ

where nmax is the size of loops, at which they unfault and

join the network.

The coalescence between the loops of sizes n0 and n
(n0 < n) is described by the reaction constant W ðn0; nÞ
[17],

W ðn0; nÞ ¼ 4riðn0Þ
kd

½DlðnÞ þ ðD2
l ðnÞ þ V 2

l ðnÞk
2
d=4Þ

1=2�;

ð39Þ

where kd is the mean free path of the dislocation between

two consecutive reactions with clusters, Vl is the average
loop climb velocity, and DlðnÞ is the climb �diffusion
coefficient’ due to the fluctuating point-defect fluxes,

which is proportional to the loop diffusion coefficient

in the size space DðnÞ. Similar to (12) and (13), DðnÞ has
two components [8]

DsðnÞ ¼ pn
Xb

	 
1=2
ðZvDvCv þ ZiDiCiÞ; ð40Þ
DcðnÞ ¼ NdGn
4b

Z2
v

hN 2
dvi

kvN 2
d

�
þ Z2

i

hN 2
dii

kiN 2
d

�
: ð41Þ

Vacancy emission in DðnÞ is neglected, because for a

small interstitial loop the process involves an associated

increase in the loop size, which is energetically un-

favorable. Note also that in (9) the reaction distance



400     600     800    1000   1200  1400   1600   1800  2000   2200   2400
10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

-v/dc = 0.15

α∗ = 0
v/ds = 0.01

v/dc =

-v/dc = 0.1

P
m

nm

-v/dc = 0.2

-v/ds = 0.015

0.01

Fig. 5. Probability of nucleation of supercritical loop as a

function of the loop size at different values of the ratios m=dc and
m=ds (- - -).

A.A. Semenov, C.H. Woo / Journal of Nuclear Materials 323 (2003) 192–204 199
between the coalescing loops is assumed to be equal to

the radius of smaller loop rðn0Þ.
Further, using the mean value theorem, we can write

down the probability Pm given by Eq. (9) as follows [33]:

Pm ¼
Z n0

nmin

exp

(
�
Z n

nmin

V pd
i ðn0Þ
Diðn0Þ

dn0
)
dn

.Z nm

nmin

exp

(
� ð1� a	Þ

Z n

nmin

V pd
i ðn0Þ
Diðn0Þ

dn0
)
dn;

ð42Þ

where

a	 ¼ �
Z n	

nmin

V cl
i ðn0Þ
Dðn0Þ dn0

�Z n	

nmin

V pd
i ðn0Þ
Dðn0Þ dn0

¼ � V cl
i ðn1Þ

V pd
i ðn1Þ

ðn0 < n1 < n	 < nmÞ: ð43Þ

Since at elevated temperatures there is a net vacancy flux

to the interstitial loops, a	 is positive. It can be also

shown that a	 < 1 [33]. Physically, this inequality means

that for subcritical interstitial loops, which can grow

beyond the critical size only through stochastic fluctua-

tions, the absorption of clusters due to coalescence only

results in some reduction in the average net vacancy flux.

In general, the integrals in (42) can be expressed in

terms of special functions. To simplify our analysis,

however, we consider only the two limiting cases:

Ds ! 0, and Dc ! 0. In the limit Dc ! 0, the probability

Pm reduces to

Pm ¼ ð1� a	Þ e�mn0=ds � e�mnmin=ds

e�mnmð1�a	Þ=ds � e�mnminð1�a	Þ=ds
ea

	mnmin=ds ;

ð44Þ

where

m ¼ V pd
i ðnÞ=n1=2; ds ¼ DsðnÞ=n1=2: ð45Þ

At elevated temperatures m is negative, and, conse-

quently, the probability for a small interstitial cluster to

grow beyond ctiticality to a size nm decreases exponen-

tially with increasing nm.
In the opposite limit, ds ! 0,
Pm ¼
ð1� a	Þ2 e2a	mn

1=2

min
=dc 1þ 2mn1=20

dc

 !
e�2mn1=2

0
=dc � 1þ 2mn1=2min

dc

 !
e�2mn1=2

min
=dc

" #

1þ 2ð1� a	Þmn1=2m

dc

� �
e�2ð1�a	Þmn1=2m =dc � 1þ 2mð1� a	Þn1=2min

dc

 !
e�2ð1�a	Þmn1=2

min
=dc

ð46Þ
with
dc ¼ DcðnÞ=n: ð47Þ
When m is negative, the exponential factor that governs

the probability for a small cluster to eventually become

supercritical is proportional to n1=2m , i.e. not to the area of

supercritical loop as in the case of dc ! 0, but to its

radius. As a result, the presence of cascade-induced

fluctuations increases the survival probability of PICs by

several orders of magnitude, even in cases where pa-

rameter dc is much less than ds (see Fig. 5), and is an

essential factor in the nucleation of dislocation loops.

4.2. Critical cluster density

At elevated temperatures, under the operation of

production bias, there is a net vacancy flux to the in-

terstitial loops and clusters (V pd
i < 0). In this case, only

interstitial loops with sizes larger than critical, can have

a positive average growth rate. From (35) the loop

critical size ncr is determined by the equation
V pd
i ðncrÞ þ V cl

i ðncrÞ ¼ 0: ð48Þ

Since the value of V cl
i ðnÞ depends on the amount of in-

terstitials accumulated in clusters, Eq. (48) also defines
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the cluster density, at which the coalescence of super-

critical loops with smaller clusters and loops starts to

take place. As shown in [33], the following condition is

necessary to satisfy (48):

NdZ
3=2
i q5=6

il

hN 2
dii

N 2
di

"
þ Z3=2

v

Z3=2
i

1

ð1� eiÞ2
hN 2

dvi
N 2

dv

#

� 1

 
þ 4ðn3=20 � n3=2minÞq

1=3
il

3ðn0 � nminÞ
2X
pb3

� �1=3 Xb
4p

� �1=6
!1=3

ffi 4b
ð1� aÞeiðn0 � nminÞ

n0ð1� eiÞ2
4p
Xb

� �2=3 pb3

2X

� �1=3

; ð49Þ

where qil is the total loop line density, the parameter a is

positive but less than unity. It has a physical meaning

similar to a	 in Eq. (42) [33].

Considering the dislocation as a point-defect sink, Zi

is a function of the loop line density qil (dashed lines for

different reaction radii in Fig. 6) [34]. At the same time,

Zi is also a function of the loop line density qil through

(49) (solid lines for different values of a in Fig. 6). Ma-

terial parameters for stainless steel used in the present

calculation are the same as previous ones [17]. Inter-

sections of the two sets of curves represent solutions of

Zi and qil that satisfy the two equations simultaneously,
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which gives the critical values of qil. It can be seen from

this that interstitial loops start to grow by coalescence

when the total loop line density qil reaches a value

around 2· 1016 m�2. Values of the reaction constant

Zi � 5–6 that follow from Fig. 6 also agree with the

previous estimations of this constant at the corre-

sponding dislocation line densities [35]. Note that at

such line densities the last term on the right-hand sides

of (49) is approximately equal to 1 and can be neglected.

It is important to remember that the value of Zi de-

pends on the total dislocation line density (see solid lines

of Fig. 6). Electron irradiation does not generate small

interstitial clusters continuously in cascades, and the

total dislocation line density is orders of magnitude less

than that under cascade-damage irradiation producing

immobile SIA clusters. As a result, under electron irra-

diation dislocation bias is much less and takes the values

conventionally used in the literature.

It can also be shown [33] that this line density is

mainly contributed from interstitial loops with sizes of

� hnii where

hnii ffi
1

2q2=3
il

pb3

2X

� �2=3
4p
Xb

� �1=3

: ð50Þ

Here qil is determined by Eq. (49). Since qil ¼ 2phriiNilX,
the number density Qil of interstitials accumulated in the

matrix in the form of clusters and loops is given by

Qil ¼ hniiNil ffi
q2=3
il b4=3

2
ffiffiffi
2

p : ð51Þ

When the total line density of interstitial loops is about

2 · 1016 m�2, hnii ffi 1:3� 102 and Qil ffi 3� 10�3. Eq.

(50) also means that most loops encountered by the

climbing loop segments contain about hnii interstitials.

Consequently, the critical loop size ncr is also around this

value, and interstitial loops with sizes nm � hnii can be

considered to be supercritical.

In addition, the ratio dc=m can be estimated, [33]

� dc
m
ffi Ndð1� eiÞ2n0

4eiðn0 � nminÞ
Xqil

4pb

� �1=2

Z3=2
i 1

"
þ Z3=2

v

Z3=2
i ð1� eiÞ2

#

ffi 10: ð52Þ

According to (36), (40), (45), (47) and (52), the ratio

ds=dc < 1. Thus, nucleation of growing interstitial loops

under cascade-damage conditions is indeed mainly the

result of cascade-induced fluctuations. From Fig. 5, the

probability of nucleation of growing loops with sizes

nm � hnii is of the order of 10�5–10�6 (nm � 1500–2500).

PICs are generated in collision cascades at a rate of

eiG=n0 Then, the rate of nucleation of interstitial loops

Jl, as given by the ratio eiGPm=ðXn0Þ, is approximately

equal to 1021–1022 loops/m3/(NRT dpa) (G=K � 0:2,
where K is the nominal NRT dpa rate). Thus, the
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experimentally observed concentrations of growing in-

terstitial loops would require a characteristic irradiation

dose of about one NRT dpa.
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Fig. 7. Dose dependence of the total interstitial content Qil in

annealed metal at elevated temperatures given by Eq. (54) at

different values of the void density Nc.
5. Swelling in annealed metals

According to the foregoing, at elevated temperatures

interstitial loops start growing by coalescence when the

total interstitial cluster content of the matrix Qil reaches

a value of �10�3. Thus, an initial dose is required for the

accumulation of this amount of interstitials in small

clusters and loops. In the absence of a dislocation net-

work at an early stage of irradiation, each interstitial

accumulated in clusters and loops is matched by a va-

cancy in vacancy clusters and voids. Thus, in annealed

metals at elevated temperatures, considering the short

lifetime of the vacancy clusters, the accumulation of

unpaired vacancies will most likely take place at the

voids. The rate of vacancy accumulation in voids dS=dt
is given by the conventional equation

dS
dt

¼ k2c ðDvCv � DiCiÞ ffi
k2cG
Zvqil

1

�
� Zvð1� eiÞ

Zi

�
: ð53Þ

The approximation in (53) assumes the dominance of

the sink strength of small interstitial clusters and loops,

when the equal amounts of vacancies and interstitials

are accumulated respectively in voids and in clusters and

loops [36]. Using the conservation law SðtÞ ¼ QilðtÞ,
similar to [36], we can obtain the following approximate

expression for the number of defects accumulating in

voids and clusters:

SðtÞ ¼ QilðtÞ ffi CN 2=5
c ð½1� Zvð1� eiÞ=Zi�GtÞ3=5; ð54Þ

where Nc is the void density,

C ¼ ð10hniiX=3ZvhriiÞ3=5=ð4p=3Þ1=5: ð55Þ

The total interstitial content of the matrix Qil as a

function of dose is plotted for stainless steel at elevated

temperatures in Fig. 7 for different values of the void

concentration. It can be seen that irradiation dose of

several NRT dpa is required before significant intersti-

tial loop nucleation and dislocation structure develop-

ment starts to occur. Note that, at temperatures above

550 �C voids are often associated with coarse precipi-

tates of certain radiation-induced and radiation-modi-

fied phases [37]. Since these precipitates effectively

increase the sink strength for point defects of the asso-

ciated voids, Eq. (54) is not applicable to such cases.

It was shown in an earlier work that after incubation,

further evolution of the dislocation structure does not

lead to an increase in the total dislocation line density

[17]. The continuous absorption of small interstitial

clusters and loops through coalescence, by the super-
critical loops, as well as by climbing network disloca-

tions, prevents further accumulation of interstitials in

clusters. In turn, interstitial loops growing beyond the

maximum size nmax join the dislocation network, the

density of which is stabilized via the mutual annihilation

of the climbing dislocations. Thus, knowing that the

steady-state total dislocation line density qil is about

2· 1016 m�2, we can calculate void swelling rate from

Eq. (53). Rewriting,

dS
dt

¼ k2cvG
Zvqil þ k2cv

� ð1� eiÞk2ciG
Ziqil þ k2ci

; ð56Þ

where k2cj ¼ 4pNcRcð1þ RckjÞ is a more accurate expres-

sion for the void sink strength [38], Rc ¼ ð3S=4pNcÞ1=3 is
the average void radius. Note that when the initial swell-

ing is small, the approximation k2cj ffi 4pNcRc as used

in the derivation of Eq. (54), is justified. In Fig. 8, we

plot the void swelling rate as a function of swelling,

showing the upper limit eiG. This agrees well with typical

behaviour of the swelling rate observed in neutron-ir-

radiated stainless steel [39]. We note that the results in

Fig. 8 represents a conservative estimate that corre-

sponds to a high dislocation line density (qil � 2� 1016

m�2), and smaller values of ei ¼ 0:2 and G=K ¼ 0:2.
More detailed discussion on the void swelling and re-

lated microstructure development under cascade-dam-

age irradiation has been presented in [17], based on

similar results obtained from numerical calculations.

The actual swelling strain in the irradiated metal

is realized through dislocation climb. Thus, under
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steady-state conditions the net rate of vacancy accu-

mulation in voids must be equal to the net interstitial

absorption by the climbing network dislocations, i.e.

dS
dt

¼ VNbqN; ð57Þ

where VN is the climb velocity of network dislocations.

Network dislocation line density qN increases when

interstitial loops join the network. At the same time, the

climbing network dislocations also annihilate each other

when segments of opposite signs meet and react, for

example, by the dipole mechanism [40]. Adopting the

simple recovery model for the dislocation in the absence

of external stress [40], one can write down the equation

for the network evolution

dqN

dt
¼ 2priðnmaxÞJNðnmaxÞ � VNq

3=2
N : ð58Þ

Here JNðnmaxÞ is the flux in the size space of interstitial

loops, which grow beyond the maximum size nmax and

join the dislocation network. From Eqs. (57) and (58),

under steady-state conditions (dqN=dt ffi 0), we obtain

JNðnmaxÞ ffi
qN

2
ffiffiffi
p

p
b
dS
dt

: ð59Þ

In deriving Eq. (59) we assume, as usual, that pr2i �
ðnmaxÞ ffi 1=qN.

Typical steady-state density of network dislocations

in stainless steel is about 5· 1014 m�2 [39]. Thus, for the

maximum swelling rate (�1%/NRT dpa [39]) experi-

mentally observable at elevated temperatures to be re-

alized the flux of interstitial loops joining the network
has to be about 6.8 · 1021 loops/m3/(NRT dpa), which is

consistent with the rate of nucleation of supercritical

loops calculated in the previous paragraph. The rate of

nucleation analytically obtained in Section 4 also agrees

well with the results of the numerical calculations of

JNðnmaxÞ [17].
6. Conclusion

In this paper, we have shown that, within the

framework of the classical theory of nucleation of

overcritical precipitates from small subcritical nuclei, the

nucleation processes of both voids and interstitial loops

from the primary clusters are similar. Based on this

framework, a kinetic model for single-component nu-

cleation is formulated, which is applicable to both the

nucleation of voids and dislocation loops at elevated

temperatures and under the operation of the production

bias. This model, like the production bias model, is

based on general physical principles, and is not material

specific. The relative simplicity in this model allows an

analytic approach to be followed. General expressions

for the nucleation probability have been derived, con-

taining explicit dependence on material properties and

irradiation conditions, thus allowing their applications

to a wide class of materials and conditions, from which

loop and void nucleation can be investigated.

In the conventional approach, nucleation theory is

usually considered with the statistical fluctuations ac-

counted for solely by random point-defect jumps. The

diffusion coefficient in the size space of the embryo

subject to such fluctuations is related to the sum of the

average point-defect fluxes, and is linearly related to the

radius of the embryo. The neglected fluctuations in

the vacancy emission rate, and those caused by random

cascade initiation, on the other hand, have diffusion

coefficients proportional to the surface area of the nu-

cleus. It is found that at elevated temperatures and when

the sink density is low, fluctuations in the rate of va-

cancy emission from voids is the dominant factor that

governs void nucleation. In this regard, the conventional

assumption that fluctuations in the vacancy emission

rate are linearly proportional to the void radius seriously

underestimates the void nucleation rate.

It is also found that the effects of cascade-induced

fluctuations become important when the total sink

strength for point defects is higher than, say, 1015 m�2.

When the nucleation rate is high and the average void

growth rate is low, cascade-induced fluctuations may

become a dominating factor on the void evolution, as

the total sink strength increases due to the nucleation

and growth of voids. Under such circumstances, the

majority of voids, particularly the smaller ones, will

shrink away, while the largest ones maintain their

growth. The resulting void coarsening is not caused by
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vacancy emission from the voids, but by the stochastic

fluctuations in the point-defect fluxes received by the

void.

Application of the present approach to void nucle-

ation in annealed pure copper at elevated temperatures

neutron-irradiated to doses of 10�4–10�2 NRT dpa

showed reasonable agreement with experimental results.

The theory has also been applied to neutron-irradiated

molybdenum at temperatures at which vacancy emission

from voids is negligible. The calculated void nucleation

rates also show reasonable agreement with experimental

results.

At elevated temperatures only sufficiently large (su-

percritical) interstitial loops are able to grow through

coalescence with smaller clusters and loops. This starts

to become important when the total line density of small

clusters and loops reaches a high value of 2· 1016 m�2.

In the presence of voids of sufficiently high concentra-

tion, an incubation dose of several NRT dpa is required

to accumulate a sufficient interstitial content in the

matrix (Qil ffi 3� 10�3) for the development of the dis-

location structure to start. The interstitial content of

Qil � 10�3, required for the interstitial loop growth at

elevated temperatures, is in agreement with the corre-

sponding values obtained from the numerical calcula-

tions [17].

After creation, PICs can only grow beyond the crit-

ical size via stochastic fluctuations, which is mostly

cascade-induced at a sink density of �1016 m�2. Since

the probability of nucleation of a supercritical loop from

a small shrinking interstitial cluster decreases exponen-

tially with its size, inclusion of the effect of the cascade-

induced fluctuations on the loop diffusion coefficient

leads to several orders of magnitude of increase in the

nucleation probability. The calculated rate of nucleation

of growing interstitial loops based on the presently de-

rived nucleation probability is sufficient (�1022 loops/

m3/NRT dpa) to account for the experimentally ob-

served number densities of interstitial loops at a dose of

one NRT dpa. This rate is also sufficient to account for

the observed swelling rates about 1%/NRT dpa.
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